
MAD
SMALL AND FAST

BUILD TOOL

FOR ERLANG APPS

1

Contents
1 MAD: Erlang Containers 3

1.1 Purpose . 3
1.2 Several Types of Packaging 3
1.3 Deployment Options . 3
1.4 OTP Compliant . 3
1.5 Tiny Size . 3
1.6 History . 4

2 Setup 6
2.1 Installing Binary . 6
2.2 Compiling Sources . 6
2.3 Creating a sample N2O project 6

3 Configuration File 8
3.1 rebar.config . 8
3.2 deps . 8
3.3 deps dir . 8
3.4 sub dirs . 8
3.5 lib dirs . 9

4 Commands 10
4.1 deps, dep . 10
4.2 compile, com . 11
4.3 release, rel, bundle, bun 11
4.4 sh, repl, rep . 12

5 Dependencies 13
5.1 OTP Compliant . 13
5.2 Application Depot . 13

6 Container Bundles 15
6.1 ESCRIPT Bundles . 15
6.2 BEAM ERTS Releases 15
6.3 LING Unikernels . 16
6.4 Docker-compatible RUNC Containers 17
6.5 Makefiles with OTP.MK 17

2

1 MAD: Erlang Containers

1.1 Purpose

We were trying to make something minimalistic that fits out appli-
cation stack1. The main idea of mad is to provide clean and simple
rebar-like fast dependency manager that is able to build several types
of packages and provides interface of containered deployments to
virtualiezed environments.

1.2 Several Types of Packaging

The key feature of mad is ability to create single-file bundled web sites.
This target escript is ready to run on Windows, Linux and Mac.

1.3 Deployment Options

As a deploy tool mad is also supposed to launch, start, stop and
manage containers, locally or remote. You can make containers from
different type of packages, like making runc container with beam
release.

1.4 OTP Compliant

Mad supports ERTS boot files generation with systools and erlang
application format used by OTP. This is the main format of application
repository. Also boot files are suported on both LING and BEAM.

1.5 Tiny Size

And the good part:

Sources Binary
mad 967 LOC 52 KB
rebar 7717 LOC 181 KB

1https://github.com/synrc

3

1.6 History

We came to conclusion that no matter how perfect your libraries are,
the comfort and ease come mostly from developing tools. Everything
got started when Vladimir Kirillov2 decided to replace Rusty’s sync
beam reloader. As you know sync uses filesystem polling which
is neither energy-efficient nor elegant. Also sync is only able to
recompile separate modules while common use-case in N2O is to
recompile DTL templates and LESS/SCSS stylesheets. That is why
we need to recompile the whole project. That’s the story how active3

emerged. Under the hood active is a client subscriber of fs4 library,
native filesystem listener for Linux, Windows and Mac.

De-facto standard in Erlang world is rebar. We love rebar interface
despite its implementation. First we plugged rebar into active and
then decided to drop its support, it was slow, especially in cold
recompilation. It was designed to be a stand-alone tool, so it has
some glitches while using as embedded library. Later we switched
to Makefile-based build tool otp.mk5.

The idea to build rebar replacement was up in the air for a long
time. The best minimal approach was picked up by Sina Samavati6,
who implemented the first prototype called ’mad’. Initially mad was
able to compile DTL templates, YECC files, escript (like bundled in
gproc), also it had support for caching with side-effects. In a month I
forked mad and took over the development under the same name.

Listing 1: Example of building N2O sample
Cold Hot

rebar get-deps compile 53.156s 4.714s
mad deps compile 54.097s 0.899s

2https://github.com/proger
3https://github.com/synrc/active
4https://github.com/synrc/fs
5https://github.com/synrc/otp.mk
6https://github.com/s1n4

4

Listing 2: Example of building Cowboy
Hot

make (erlang.mk) 2.588s
mad compile 2.521s

5

2 Setup

2.1 Installing Binary

Fresh version of mad included as a binary in its primary github
repository:

curl -fsSL https://raw.github.com/synrc/mad/master/mad > mad \
&& chmod +x mad \
&& sudo cp /usr/local/bin

Or you may want to add mad to your PATH.

2.2 Compiling Sources

If you want you can compile mad by yourself:

git clone http://github.com/synrc/mad \
&& cd mad \
&& make

Note that mad uses mad to build mad. It’s mad.

2.3 Creating a sample N2O project

mad also comes with N2O templates. So you can bootstrap a N2O-based
site just having a single copy of mad binary.

mad app sample
cd sample
mad deps compile release sample

After that you can just run escript web app under Windows, Linux
and Mac and open http://localhost:80007.

7http://localhost:8000

6

C:\> escript sample
Applications: [kernel,stdlib,crypto,cowlib,ranch,

cowboy,compiler,syntax_tools,
erlydtl,gproc,xmerl,n2o,sample,
fs,active,mad,sh]

Configuration: [{n2o,[{port,8000},
{route,routes}]},

{kvs,[{dba,store_mnesia},
{schema,[kvs_user,

kvs_acl,
kvs_feed,
kvs_subscription]}]}]

Erlang/OTP 17 [erts-6.0] [64-bit] [smp:4:4]
[async-threads:10] [kernel-poll:false]

Eshell V6.0 (abort with ˆG)
1>

7

3 Configuration File

3.1 rebar.config

mad uses rebar.config filename to load mad configuration. Despite
mad is no fully rebar compatible (e.g. it can’t uses rebar plugins, ports
compilation is rather different, etc), it uses its name to achive certail
level of compatibility.

3.2 deps

deps is the core option of mad. It says which OTP applications
shold be used and where they could be found. Yoy may also specify
versions. Here is simpliest example:

Listing 3: deps Option
{deps, [

{kvs, ".*", {git,"git://github.com/synrc/kvs"}},
{forms, ".*", {git,"git://github.com/spawnproc/forms"}}

]}.

3.3 deps dir

To specify where deps should be stored after fetching inside your
application you use deps dir option:

Listing 4: deps dir Option
{deps_dir, "deps"}.

3.4 sub dirs

If your application consist of more than one src directory, you may
specify all of the sub-applications. Each sub-application should be
valid OTP application with its own rebar.config configuration file.

8

{sub_dirs,["apps"]}.

3.5 lib dirs

To use include directive across your sub-applications you should spec-
ify the lib dirs directories which will be settled as include directories
during compilation.

{lib_dirs,["apps"]}.

E.g. you have my app and my server applications inside apps
directory and you including HRL file from my server application from
ap app application:

-module(my_app).
-include_lib("my_server/include/my_server.hrl").

9

4 Commands

Synrc mad has a simple interface as follows:

MAD Container Tool version b547fa

invoke = mad params
params = [] | command [options] params
command = app | deps | clean | compile | up

| release [beam | ling | script | runc]
| deploy | start | stop | attach | sh

It seems to us more natural, you can specify random commands
set with different specifiers (options).

4.1 deps, dep

In rebar-like managers we are selecting deps from rebar.config:

{sub_dirs,["apps"]}.
{deps_dir,"deps"}.
{deps, [active,{nitro,"2.9"},{n2o,"2.9"}]}.

The search sequence for dependecies is follows. First mad will try
to reach global package repository at http://synrc.com/apps/index.txt8,
this address is configurable. No application server is required for mad
package management, only static files with OTP application format.

{application,bpe,
[{description,"BPE SRC Business Process Engine"},
{vsn,"1.9"},
{registered,[]},
{applications,[kernel,stdlib,kvs,n2o]},
{dependencies,[kernel,stdlib,fs,ranch,crypto,mnesia,

gproc,cowlib,kvs,cowboy,n2o,active,
jsone,mad,nitro,sh,bpe]},

{mod,{bpe_app,[]}},

8http://synrc.com/apps/index.txt

10

{env,[]},
{modules,[bpe,bpe_app,bpe_date,bpe_event,bpe_metainfo,bpe_proc,

bpe_sup,bpe_task,default_railing,log_allow,routes,
sampleproc,sampleproc_process]}]}.

If no file is found or server is unavailable then application registry
will be taken from mad built-in index.txt. If no luck then the name
of application, e.g. ”spawnproc/rete” will be interpreted as github
repository address.

$ mad dep active n2o kvs ling "spawnproc/rete"

4.2 compile, com

Performs compilation of all known compilations backends in com-
plilation profile of mad:

app app.src erlang templating
dtl DTL compiler
erl BEAM compiler
c/c++ for gcc cland and other native compilation
script .script file used in projects like gproc
yrl/xrl DSL language parser compilers
upl UPL compiler

4.3 release, rel, bundle, bun

Taking all dependecies and resolve boot sequence according to depen-
decy order. Storing this value in .applist. If release type is not defined
(beam in following example), then script release will be taken as a
default.

$ mad release beam sample
Ordered: [kernel,stdlib,fs,ranch,crypto,compiler,syntax_tools,

gproc,cowlib,cowboy,n2o,sample,active,erlydtl,jsone,

11

mad,nitro,sh]
WARNING : Missing application sasl. Can not upgrade with this release
sample.boot: ok
OK: "sample"

$ mad rel mad
Ordered: [kernel,stdlib,inets,sh,mad]
OK: "mad"

MAD supports several releasing backends:

script script bundles, like mad itself
beam ERTS releases with systools
ling LING portable unikernels
runc Docker-compatible containers

4.4 sh, repl, rep

Start REPL shell session.

12

5 Dependencies

5.1 OTP Compliant

mad supports app files inside ebin, priv static folder and csrcportsdirectoriespoints.Specificallytwokindsofdirectorylayouts :

Listing 5: Solution
+-- apps
+-- deps
+-- rebar.config
+-- sys.config

Listing 6: OTP Application
+-- deps
+-- ebin
+-- include
+-- priv
+-- src
+-- rebar.config

5.2 Application Depot

As you may know you can create OTP releases systools from sasl ap-
plication. mad currently creates releases with systools, but manually
manages binary access: from local erlang or public applcation depot.

To bundle binary BEAM or LING along with synrc spplications
MAD can use global repository statically avaliable at Github Pages:

$ curl -X GET http://synrc.com/apps/index.txt
[{bin,[beam], ["7.0.3"]},

{lib,[active], ["0.9"]},
{lib,[compiler], ["6.0"]},
{lib,[cowboy], ["1.0.1"]},
{lib,[cowlib], ["1.0.0"]},

13

{lib,[crypto], ["3.6"]},
{lib,[erlydtl], ["0.8.0"]},
{lib,[fs], ["1.9"]},
{lib,[gproc], ["0.3"]},
{lib,[jsone], ["v0.3.3"]},
{lib,[kernel], ["4.0"]},
{lib,[stdlib], ["2.5"]},
{lib,[kvs], ["2.9"]},
{lib,[mad], ["2.9"]},
{lib,[mnesia], ["4.13"]},
{lib,[n2o], ["2.10"]},
{lib,[nitro], ["0.9"]},
{lib,[ranch], ["1.0.0"]},
{lib,[rest], ["2.9"]},
{lib,[review], ["2.9"]},
{lib,[sh], ["1.9"]},
{lib,[syntax_tools], ["1.7"]}].

14

6 Container Bundles

6.1 ESCRIPT Bundles

The key feature of mad is ability to create single-file bundled web
sites. Thus making dream to boot simpler than node.js come true. This
bundle target is ready to run on Windows, Linux and Mac.

To make this possible we implemented a zip filesytem inside es-
cript. mad packages priv directories along with ebin and configs. You
can redefine each file in zip fs inside target escript by creation the copy
with same path locally near escript. After launch all files are copied to
ETS. N2O also comes with custom cowboy static handler that is able
to read static files from this cached ETS filesystem. Also bundle are
compatible with active online realoading and recompilation.

E.g. you main create a single file site with:

mad bundle app_name

app name shoul be the same as a valid Erlang module, with app -
module:main/1 function defined, which will boot up the bundle. This
function could be like that:

-module(app_name).
main(Params) -> mad_repl:sh(Params).

6.2 BEAM ERTS Releases

As you may know you can create OTP releases with reltool (rebar
generate) or systools (relx). mad creates releases boot script with
systools and pack tra by itself.

mad release beam sample

15

6.3 LING Unikernels

Sample rebar.config for your application you want to go unikernel:

{deps_dir,"deps"}.
{deps, [{ling,"master"},{sh,"1.9"}]}.

Now you should build LING/posix:

$ mad dep
$ cd deps/ling
$ ARCH=posix make

Now pack vmling.o, your OTP apps and rest static to single-file
LING bundle with VM inside.

$ mad release ling mad
Ling Params: []
ARCH: posix_x86
Bundle Name: mad
System: [compiler,syntax_tools,sasl,tools,mnesia,reltool,xmerl,crypto,kernel,

stdlib,wx,webtool,ssl,runtime_tools,public_key,observer,inets,asn1,
et,eunit,hipe,os_mon]

Apps: [kernel,stdlib,sh,mad]
Overlay: ["crypto.beam","9p.beam","9p_auth.beam","9p_info.beam",

"9p_mounter.beam","9p_server.beam","9p_tcp.beam","9p_zero.beam",
"disk.beam","disk_server.beam","embedded_export.beam",
"goo_export.beam","goofs.beam","hipe_unified_loader.beam",
"inet_config.beam","kernel.beam","ling_bifs.beam","ling_code.beam",
"ling_disasm.beam","ling_iops.beam","ling_iopvars.beam",
"ling_lib.beam","net_vif.beam","os.beam","prim_file.beam",
"user_drv.beam","os_mon.beam","dets.beam","filename.beam",
"maps.beam","unicode.beam","zlib.beam"]

Bucks: [{boot,"/boot",2},
{os_mon,"/erlang/lib/os_mon/ebin",1},
{crypto,"/erlang/lib/crypto/ebin",1},
{kernel,"/erlang/lib/kernel/ebin",90},
{stdlib,"/erlang/lib/stdlib/ebin",85},
{sh,"/erlang/lib/sh/ebin",6},
{mad,"/erlang/lib/mad/ebin",43}]

Initializing EMBED.FS:
Mount View:

16

/boot /boot
/erlang/lib/os_mon/ebin /os_mon
/erlang/lib/crypto/ebin /crypto
/erlang/lib/kernel/ebin /kernel
/erlang/lib/stdlib/ebin /stdlib
/erlang/lib/sh/ebin /sh
/erlang/lib/mad/ebin /mad
Creating EMBED.FS C file: ...ok
Compilation of Filesystem object: ...ok
Linking Image: ok

Run it:

$ rlwrap ./image.img
Erlang [ling-0.5]

Eshell V6.3 (abort with ˆG)
1> application:which_applications().
[{mad,"MAD VXZ Build Tool","2.2"},
{sh,"VXZ SH Executor","0.9"},
{stdlib,"ERTS CXC 138 10","2.2"},
{kernel,"ERTS CXC 138 10","3.0.3"}]

6.4 Docker-compatible RUNC Containers

Creating runc-complatible container is simple:

mad release runc sample

6.5 Makefiles with OTP.MK

OTP.MK is a tiny 50 lines Makefile that allows to start your set of
application using run erl and to erl tools from OTP distribution. We
use that way in poduction. This is the best option also in development
mode because all directory structure is open and mutable, so you can
reload modified files and perform recompilation on the fly.

17

It uses the original code to fast resolve dependencies into the right
boot sequence to start. If you want more powerful Makefile-based
erlang package management you may take a look onto ERLANG.MK
by Nine Nines.

make console

18

