
Extended Process Registry for Erlang

Ulf T. Wiger
Ericsson AB

ulf.wiger@ericsson.com

Abstract
The built-in process registry has proven to be an extremely useful
feature of the Erlang language. It makes it easy to provide named
services, which can be reached without knowing the process iden-
tifier of the serving process.

However, the current registry also has limitations: names can
only be atoms (unstructured), processes can register under at most
one name, and it offers no means of efficient search and iteration.

In Ericsson’s IMS Gateway products, a recurring task was to
maintain mapping tables in order to locate call handling processes
based on different properties. A common pattern, a form of index
table, was identified, and resulted in the development of an ex-
tended process registry.

It was not immediately obvious that this would be worthwhile,
or even efficient enough to be useful. But as implementation pro-
gressed, designers found more and more uses for the extended
process registry, which resulted in significant reduction of code
volume and a more homogeneous implementation. It also pro-
vided a powerful means of debugging systems with many tens of
thousand processes.

This paper describes the extended process registry, critiques it,
and proposes a new implementation that offers more symmetry,
better performance and support for a global namespace.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features – abstract data types,
patterns, control structures.

General Terms: Algorithms, Languages.

Keywords.: Erlang; process registry

1. Introduction
IMS Gateways is a design unit at Ericsson developing a family of
products which are spin-offs of the venerable AXD 301 multi-
service ATM switch [1]. That is to say, many of the developers
took part in developing the AXD 301, and many concepts have
been reused – even though the hardware architecture is entirely
new, and much of the software re-written.

The AXD 301 was largely uncharted territory, as no product
with such complexity had ever been attempted in Erlang. One of
the early challenges was that processes were a scarce resource.
Over time, previous limits have been lifted, hardware has become
more powerful, and the market more geared towards rapid devel-

opment of new features. Having previously developed once com-
plex product with a release cycle of 1-1.5 years, we now develop
5-10 similar products in parallel, and with much shorter release
cycles. It has become obvious that our programming style must
also evolve to fit these new circumstances.

We find that we increasingly move towards programming in
“textbook Erlang” style, using a large number of processes, and
refraining from low-level optimizations as far as possible. We feel
that this style of programming will pay off especially as we now
start introducing multi-core processors in our products.

There are drawbacks, however. We have seen that in some of
our applications, modeling for the natural concurrency patterns
may lead to as many as 200 000-400 000 concurrent processes.
While the Erlang virtual machine can handle this many processes
without performance degradation, several questions arise:

• How does one debug a system with nearly half a million
processes on each processor?

• How does one efficiently operate on data that is spread
out across several thousand processes rather than residing
in an ETS table?

• How is debugging affected by hiding much information
inside process state variables, rather than keeping it in the
in-memory database (ETS or Mnesia)?

• How much memory overhead do we get, when we in-
crease the number of process heaps to this extent?

In many cases, trying to address these concerns, designers tend to
reduce the number of processes, storing data in ets tables for effi-
cient retrieval. Unfortunately, this often leads to convoluted con-
currency models – a problem which grows over time, complicates
debugging and hampers product evolution [2]. But if we need to
choose between elegant code that might blow up (or at least cause
significant disturbance) in live sites during debugging, or compli-
cated code with predictable characteristics, the latter always wins
in non-stop systems. The ideal would of course be elegant pat-
terns that also scale to very large systems.

When discussing ways to simplify the code, it became appar-
ent that many of the tasks in our programming could be summa-
rized as “finding the right process(es)”, and out of this grew the
idea of creating a generic process index. This paper describes this
index, called the extended process registry. As is common in
commercial product development, time constraints forced us to
launch the solution before the concept had been fully understood.
This led to some code bloat and inconsistencies, but overall a
significant improvement over the model it replaced. We critique
the existing implementation and propose a cleaner model, which
also works as a global registry.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Erlang’07 October 5, 2007, Freiburg, Germany.
Copyright © 2007 ACM 978-1-59593-675-2/07/0010…$5.00.

2. Current situation
Erlang processes provide more than just execution context and
memory protection. They also have a globally unique identity (the
PID), and error handling characteristics (process links, trapping
exit signals, cascading exits) that make them a powerful compo-
nent when modeling and structuring a system. In many respects, it
is perhaps useful to think of Erlang processes as “agents”. Yet, in
many Erlang programs, the processes are surprisingly anonymous.
When debugging, a process is primarily identified through its
registered name (if it has one), the initial function, and the current
function. This is often insufficient. The function sys:get_status/1
may offer more insight, but only if the process is responsive, and
supports OTP system messages. As a last resort, one may gener-
ate a stack dump of the process and try to decode the contents.

We describe the operations performed on processes as process
inspection and process selection.

2.1 Process inspection

As described by Cronqvist [3], powerful debugging tools can
be built on top of the process metadata and tracing facilities.
Cronqvist describes how debugging large systems is often done
by scanning all processes for problem indicators, and then focus-
ing on specific processes for more detailed information. It is noted
that grouping related processes is convenient, and that it is some-
times difficult to single out an erroneous process if the number of
processes is “large” (600-800). Erlang offers convenient process
properties, such as heap_size, reductions, etc. for giving an over-
view of resource usage.

The programmer cannot add information elements to the stan-
dard set of process_info() elements, except by storing data in the
process dictionary. OTP offers a library function,
sys:get_status(P), which fetches the internal state from a process
that conforms to the OTP system message protocol [4]. But iterat-
ing over all processes and calling sys:get_status/1 for each could
have dire consequences. Not only does it assume that each proc-
ess supports the OTP system messages (and there is no way to
find out except to try it); it also assumes that all processes are
ready to answer a query. If a process is busy or blocked waiting
for some other message, our query will block as well, and perhaps
time out. In a large system, this approach is extremely expensive
at best.

2.2 Process selection

It is very common to have programming patterns where a process
must find the intended recipient(s) of a message.

2.2.1 Finding a process by unique name

In the simplest case, name registration is used to publish the iden-
tity of a known service. Erlang/OTP has two naming services: the
built-in registry, and the global name server (called ‘global’). The
global name server allows registration of structured names,
whereas the built-in registry does not. The built-in registry is
blindingly fast, which cannot be said for the global registry.

In the case where a local resource is needed, but where one
does not want to register a unique name, things get more convo-
luted. The following intricate code serves to locate the shell
evaluator for the current process. The first snippet was taken from
the module group.erl in the OTP kernel application, but nearly
identical code is found in other places (user_drv, user). We note
with a modicum of glee that the key trick is to peek inside the
process dictionary of another process:

Code example 1: Locating IO interface processes (group.erl)

%% Return the pid of user_drv and the shell process.
%% Note: We can't ask the group process for this info since it
%% may be busy waiting for data from the driver.
interfaces(Group) ->
 case process_info(Group, dictionary) of
 {dictionary,Dict} ->
 get_pids(Dict, [], false);
 _ ->
 []
 end.

get_pids([Drv = {user_drv,_} | Rest], Found, _) ->
 get_pids(Rest, [Drv | Found], true);
get_pids([Sh = {shell,_} | Rest], Found, Active) ->
 get_pids(Rest, [Sh | Found], Active);
get_pids([_ | Rest], Found, Active) ->
 get_pids(Rest, Found, Active);
get_pids([], Found, true) ->
 Found;
get_pids([], _Found, false) ->
 [].

These functions are used from the module shell.erl in the OTP
stdlib application. The formatting unfortunately breaks down due
to the deep nesting of case statements:

Code example 2: Finding the current shell evaluator (shell.erl)

%% Find the pid of the current evaluator process.
whereis_evaluator() ->
 %% locate top group leader,
 %% always registered as user
 %% can be implemented by group (normally)
 %% or user (if oldshell or noshell)
 case whereis(user) of
 undefined -> undefined;
 User ->
 %% get user_drv pid from group,
 %% or shell pid from user
 case group:interfaces(User) of
 [] -> % old- or noshell
 case user:interfaces(User) of
 [] -> undefined;
 [{shell,Shell}] ->
 whereis_evaluator(Shell)
 end;
 [{user_drv,UserDrv}] ->
 %% get current group pid
 %% from user_drv
 case user_drv:interfaces(
 UserDrv) of
 [] -> undefined;
 [{current_group,Group}] ->
 %% get shell pid from group
 GrIfs =
 group:interfaces(Group),
 case lists:keysearch(
 shell, 1, GrIfs) of
 {value,{shell,Shell}} ->

 whereis_evaluator(Shell);
 false ->
 undefined
 end
 end
 end
 end.

We do not claim that the code is badly written; it was written by
one of the creators of the Erlang language. The reader is encour-
aged to think of better alternative solutions.

We can guess at why registered names are not used instead.
Most likely, one would like to use structured names. Alterna-
tively, one could register a non-unique name, which could be
queried and matched against the group_leader() result for the
current process. But Erlang/OTP lacks support for this.

2.2.2 Finding all processes sharing a common property

There is no common pattern for grouping processes in Er-
lang/OTP, yet it is quite common to do so, using various tricks.

In the OTP Release Handler, the following code is executed
during soft upgrade. The purpose is to find all processes which
have indicated in their child start specification that they need to
be suspended when reloading a certain module:

Code example 3: Finding processes to suspend

(release_handler_1.erl)

suspend(Mod, Procs, Timeout) ->
 lists:zf(
 fun({_Sup, _Name, Pid, Mods}) ->
 case lists:member(Mod, Mods) of
 true ->
 case catch sys_suspend(Pid, Timeout) of
 ok -> {true, Pid};
 _ ->
 …, false
 end;
 false -> false
 end
 end, Procs).

The Procs variable was generated using the following function:

get_supervised_procs() ->
 lists:foldl(
 fun(Application, Procs) ->
 case application_controller:get_master(Application) of
 Pid when pid(Pid) ->
 {Root, _AppMod} =
 application_master:get_child(Pid),
 case get_supervisor_module(Root) of
 {ok, SupMod} ->
 get_procs(supervisor:which_children(Root),
 Root) ++
 [{undefined, undefined,
 Root, [SupMod]} | Procs];
 {error, _} ->
 error_logger:error_msg(…),
 get_procs(
 supervisor:which_children(Root), Root) ++ Procs
 end;
 _ -> Procs
 end
 end, [],
 lists:map(
 fun({Application, _Name, _Vsn}) ->
 Application
 end,
 application:which_applications())).

The information needed by the release_handler is actually stati-
cally defined (most of the time), and exists in the local state of
the supervisors. An obvious limitation is that the release handler
can only find processes that are members of an OTP supervision
tree. The suspend/code_change/resume operation should work
just as well for processes that are not, but they have no way of
making themselves known.

Again, the code is by no means badly written, but we feel that
it is significantly more convoluted than it should be. We also note
that the two examples given here use distinctly different strategies
for representing process properties. The result is that vital infor-
mation about processes is scattered all over the place, and the
person debugging a system needs to master a wide range of tech-
niques for finding it.

2.2.3 The process dictionary

The process dictionary is a special set of properties. It is usu-
ally seen as a built-in hash dictionary for the process, but it plays
a special role in crash reports generated by SASL. All OTP be-
haviours have data about their ancestors in the process dictionary.
This is mainly of use when a process dies and a crash report is
printed.

Code example 4: Crash report info gathering (proc_lib.erl)

crash_report(normal,_) -> ok;
crash_report(shutdown,_) -> ok;
crash_report(Reason,StartF) ->
 OwnReport = my_info(Reason,StartF),
 LinkReport = linked_info(self()),
 Rep = [OwnReport,LinkReport],
 error_logger:error_report(crash_report, Rep),
 Rep.

my_info(Reason,StartF) ->
 [{pid, self()},
 get_process_info(self(), registered_name),
 {error_info, Reason},
 {initial_call, StartF},
 get_ancestors(self()),
 get_process_info(self(), messages),
 get_process_info(self(), links),
 get_cleaned_dictionary(self()),
 get_process_info(self(), trap_exit),
 get_process_info(self(), status),
 get_process_info(self(), heap_size),
 get_process_info(self(), stack_size),
 get_process_info(self(), reductions)
].

get_ancestors(Pid) ->
 case get_dictionary(Pid,'$ancestors') of
 {'$ancestors',Ancestors} ->
 {ancestors,Ancestors};
 _ ->
 {ancestors,[]}
 end.

get_cleaned_dictionary(Pid) ->
 case get_process_info(Pid,dictionary) of
 {dictionary,Dict} -> {dictionary,clean_dict(Dict)};
 _ -> {dictionary,[]}
 end.

clean_dict([E|Dict]) when element(1,E) == '$ancestors' ->
 clean_dict(Dict);
clean_dict([E|Dict]) when element(1,E) == '$initial_call' ->
 clean_dict(Dict);
clean_dict([E|Dict]) ->
 [E|clean_dict(Dict)];
clean_dict([]) ->
 [].

get_dictionary(Pid,Tag) ->
 case get_process_info(Pid,dictionary) of
 {dictionary,Dict} ->
 case lists:keysearch(Tag,1,Dict) of
 {value,Value} -> Value;
 _ -> undefined
 end;
 _ ->
 undefined
 end.

The process dictionary offers a way to use “global variables”
within a process. As we have seen previously, it is sometimes also
used to extract information from other processes, but doing so is
inefficient, since a remote process can only extract the entire dic-
tionary as a list of {Key,Value} tuples.

3. Detailed requirements
We identified the following specific requirements to amend the
current situation with our own extended process registry.

3.1 Structured registered names

In our applications, the most intuitive value to use as a registered
name for a call handling process is the Call ID. Depending on
type of call, the structure of this ID will vary, but it is always
unique. Since our systems are designed to handle millions of calls
per hour, we cannot possibly generate a unique atom for each, as
this would quickly exceed the capacity of the atom table. Because
of this, we have traditionally refrained from registering call han-
dling processes, and instead implemented a “dispatch” table,
mapping process identifiers to Call ID – a specialized process
registry!

3.2 Multiple registered names per process

Through the generations of our products, we have tried different
process models for call handling. Each model has its pros and
cons. For H.248-based call handling, it makes sense to have one
process representing the “context”, and perhaps one process per
“termination”1. But in some respects, terminations may just as
well be handled as properties of the context process. Most of the
time, we do not need to address a termination individually, but in
some cases, we do. If “only one name per process” is an invariant,
we must either decide to register the terminations, and lock our-
selves into having one process per termination, or leave them
unregistered, and address the context instead (which may, de-

1 Contexts and terminations are H.248 terms. A context is typically a
phone call, and the terminations are the specific data paths on which to
send data. A context can include several terminations.

pending on process model, pass on the message to a termination
process).

While all call handling is H.248-centric, this is only a minor
problem, as terminations cannot exist without a context. However,
we also deal with other protocols, e.g. SIP, H.323, and some pro-
prietary, and we have been around long enough to know that this
set of protocols changes over time.

The entity needing to send a signal to the process handling the
termination, really does not care whether that process is also han-
dling some other resource. It does make sense, however, to re-
quire that only one process is the point of contact for any given
termination. In terms of the process registry, limiting the number
of registered names per process imposes an artificial limitation,
but being able to uniquely identifying one process through the use
of an alias is obviously useful.

3.3 Registration of non-unique properties

A very common pattern is that a process depends on some other
resource, e.g. a signaling link. If the signaling link dies, all calls
established through that link must normally be removed. This
could easily be accomplished by publishing a “property” identify-
ing the signaling link being used for a given call. Normally this is
handled through an ETS table, mapping link ID with Call ID.

By allowing registration of structured names, we could possi-
bly hope to incorporate this information in the registered name,
but this can only work for one or a few properties, if at all.

3.4 Efficient selection and inspection of related processes

When performing operations on batches of calls/processes, it
is vital that the operations scale to tens or hundreds of thousand
processes. Furthermore, while debugging a live system, the sup-
port engineer or designer needs to be able to browse process list-
ings without risking damage or overload to the system. Due to the
complexity of the software, it is important that dependencies be-
tween processes are as visible and regular as possible.

4. Possible solutions
Some of these problems can be addressed with partial solutions.
We will discuss them here.

4.1 Registering structured names

The most straightforward way of solving registration of structured
names would be to modify the registration BIFs to accept names
that are not atoms. Most likely, this would have noticeable per-
formance impact on all registrations, and is therefore frowned
upon.

4.2 Atom table garbage collection

Many have called for garbage collection, but it is a problem not
easily solved. One possible approach was suggested by Thomas
Lindgren in [5]. This would allow more liberal use of dynami-
cally created atoms, but does not really address the problem of
registering structured names.

4.3 Process ETS table

One suggestion put forth in the discussion was to represent proc-
ess metadata in a manner similar to an ETS table, allowing for
select()-style searches. This sounds like a good idea, but its im-
plementation seems decidedly non-trivial. It is vital that this pro-
jection does not add significant overhead to the normal process
handling.

4.4 Exported process dictionary items

A few things could be made to make it more convenient to use the
process dictionary for “publishing” metadata. Allowing processes
to inspect individual dictionary objects in another process’ dic-
tionary would be a partial solution, and would not be too difficult
to implement. Adding some way to “publish” certain keys, thus
adding them to a global index might be very useful, but would
pose a greater implementation challenge. However, it is often
argued that making the process dictionary more convenient risks
leading beginners astray, and might serve to promote a style of
get/put programming generally considered harmful in Erlang.

4.5 Separate registry

This was our preferred approach, partly since it is relatively easy
to implement, and does not require changes to the runtime system.
We initially set out to implement a simple registry for unique
structured names and non-unique properties. But as is often the
case with first implementations, experiments with this simple
registry brought new ideas to the table, and new features (count-
ers, registration by proxy, aggregated counters) were added.

The remainder of this paper describes the first implementation
of the registry, and then proposes a new solution, which we be-
lieve is more regular. It is faster than the first version, while offer-
ing more functionality (both global and local scope).

5. The extended process registry (proc)
We created a module called ‘proc’ to implement the extended
process registry (sysProc in our products, since we insist on using
prefixes to manage the namespace). An Open Source version is
available at Jungerl. It is implemented using a gen_server and a
set of ordered_set ETS tables. Because it is a regular Erlang im-
plementation, and not integrated into the virtual machine, we have
introduced some extra functions for optimization purposes.

The most basic functions are:
• reg(Name) – registers a unique name. Name can be any

term.
• unreg(Name) – unregisters a name
• where(Name) -> pid() | undefined – looks up a name
• send(Name, Msg) – sends Msg to a registered process
• add_property(Property) – publishes a non-unique property.
• del_property(Property) – un-publishes a property

In addition to these basic functions, a number of retrieval func-

tions exist:
• fold_names(Fun, Acc, Patterns) -> NewAcc
• fold_properties(Fun, Acc, Patterns) -> NewAcc
• select_names(Patterns) -> [{Name, Pid}]
• select_properties(Patterns) -> [{Property, Pid}
• first_name()/next_name(Prev)/last_name()
• first_property()/...
• info(Pid, Item), where Item = properties | names | ...

In each of the functions above, Patterns is a match pattern

similar to the ones used in ets:select_count(Tab, Pattern), where
Tab would be an ordered_set table with {Name, Pid} objects.

6. Examples of usage

6.1 Finding processes that share a common property

Going back to the release_handler example in chapter 2.2.2, had
the release handler instead used the extended process registry, the
corresponding implementation could have looked like this:

Code example 5: Idea for suspending processes at code change

suspend(Mod, T) ->
 proc:fold_properties(
 fun({_, Pid}, Acc) ->
 case catch sys:suspend(Pid, T) of
 ok -> [Pid | Acc];
 _ -> Acc
 end
 end, [], {sasl, suspend_for, Mod}).

Not only would this version be significantly faster, it would also
work for any Erlang processes, whether or not they are part of an
OTP supervision tree.

Looking closer at this code, one may observe a simple pub-
lish/subscribe pattern. All that is needed is the subscribe function:

Code example 6: Registering modules for code change (idea)

suspend_for(Mod) ->
 proc:add_property({sasl, suspend_for, Mod}).

We have now managed to further enhance the release_handler to
allow processes to add modules on the fly, for which they need to
be suspended.

Furthermore, while the existing implementation is obscure and
pretty complicated, requiring extensive study of OTP principles
and the release handler for full understanding, the alternative
solution, based on a common pattern, becomes more transparent.
Designers easily spot this (previously hidden) property of a proc-
ess, e.g. when calling the function proc:info(Pid, properties), and
are also quickly able to retrieve these processes from an erlang
shell prompt, e.g. using the function proc:pids({sasl, suspend_for,
M}).

(While the above code might look contrived, it reuses the ETS
select patterns, and can be quickly assimilated, especially if the
process registry functions become the primary portal to all pub-
lished process metadata in the system).

To further bash the existing solution, our proposed alternative
is largely insensitive to the number of processes in the system.
The process registry uses an ordered_set ETS table, so as long as
we search for properties where at least the first parts of the prop-
erty are known, the relevant subset will be extracted quite effi-
ciently, rather than iterating through the entire supervision tree for
each module.

6.2 Finding a given instance of a specific service

The example in section 2.2.1, finding the current shell evalua-
tor, can be rather simply managed with the extended process reg-
istry. Indeed, since the code assumes only one current evaluator,
we could do with a unique name, such as {shell, cur-
rent_evaluator}. We could also opt for a publish/subscribe pattern
as described in section 6.1.

Code example 7: Registering current evaluator (idea)

whereis_evaluator() ->

 proc:where({?MODULE, current_evaluator}).

7. Slippery Slope
The first prototype of the extended process registry mimicked

the process dictionary, storing {Key, Value} tuples. This felt con-
trived when dealing with unique process names. It was also not
obvious that it would be a good model for shared properties. As a
result, the Value part was dropped, and only the Key part was
kept.

However, a request to be able to store counters in the process
registry was quickly put forth and while this felt like borderline
abuse of the model, the request was granted. There were some
good reasons: all call-handling processes need to maintain count-
ers, and there were situations were iterating over the counters in a
fashion similar to that of properties was desirable. Unfortunately,
counters behave like properties most of the time, but also have a
value. While some counters needed to be summarized in real-
time, aggregated counters were subsequently added, which con-
tinuously maintain a total of all registered counters with the same
name. To maintain the aggregated counters, some process needs
to monitor the owners of individual counters, and update the ag-
gregate accordingly if they die. Since the process registry had a
process performing this monitoring already, it made perfect sense
to install the aggregated counters there. As this was a last-minute
request, the easiest way to do it was to add them a little bit on the
side. Once added, an aggregated counter must be explicitly de-
leted, and is not included when properties and/or counters are
queried.

While counters caused the ‘proc’ implementation to start
cracking at the seams, we want to emphasize that counters are
extremely useful. Among the built-in process properties, there are
also counters (reductions), and, in general, value properties
(heap_size, fullsweep_after, etc.). Indeed, the model should allow
for value properties in order to be complete.

Another late requirement was to allow property registration by
proxy. This called for an access control list to allow for some
control of who added or removed properties for a given process.
This was a concession to the practical problems of rewriting too
much code, but made property registration more costly than it
should be. Without the ability to register by proxy, the process
could simply have inserted its properties into the central ETS
table, without risking any race condition. This issue is analogous
to that of the BIF register/2. As it is possible to register another
process, it is quite easy to write code that is not timing-safe.

We recommend that a proper extended process registry would
only allow processes to register their own unique names and
shared properties. Registering of unique names must still be seri-
alized, but registering of non-unique properties then becomes

trivial. We will later show how registration by proxy can still be
accomplished by adding an OTP system message.

8. Improved model and implementation (gproc)
The first implementation helped us understand which features
were desired in our registry. We will now describe a second ver-
sion, gproc [6] (where the “g” indicates the addition of global
scope).

The main purpose is to index process metadata to allow effi-
cient iteration over similar processes. We identify different types
of metadata (properties), using the following distinctions:

• Names or properties
• Manual or automatic properties
• Global or local properties

8.1 Names or properties

We make the distinction between ‘names’, which are unique, and
‘properties’, which are not. Both names and properties have a key
and a value part, for the sake of symmetry. We give counters
special treatment, as they are commonplace and performance-
critical. Since we have figured out how to maintain aggregated
counters with minimal overhead, we allow this as a special cate-
gory as well.

8.2 Manual or automatic properties

The emulator maintains a set of properties for each process. Since
they are guaranteed to exist for all processes, it would seem that
little is gained by indexing them. However, it would be useful to
perform queries such as “list all processes running on high prior-
ity”, or “list all gen_servers in the system” (the latter would re-
quire exposing another implicit property of processes, which is
vital to the understanding of program behaviour).

Some of the automatic properties change far too rapidly to al-
low any form of indexing. Examples are ‘reductions’ and ‘cur-
rent_function’. If it were possible to call process_info() BIF from
inside ets:select(), we could include these properties as if they
were part of the index.

The aggregated counter is another example of an automatic
property. There may be a generic pattern allowing for the safe and
efficient handling of user-defined automatic properties, but if so,
we have yet to discover it.

8.3 Global or local properties

So far, our own use of the process registry has been purely local.
However, it should be noted that the global name server in OTP
does indeed allow registration of structured names, as well as
multiple registered names per process.

We make an effort to allow for registration of all categories
mentioned above with either global or local scope.

8.4 Permissions

We impose the restriction that a process can only add, delete, and
modify its own properties – never properties belonging to another
process. Not only does this allow for a much more efficient im-
plementation. It also removes a potential source of race conditions
from the interface. This is a distinct departure from the existing
‘proc’ implementation, which allowed registration by proxy, but
we can accomplish the same thing by extending the sys.erl mod-
ule.

8.5 Symmetric data representation

One of the main advantages of the extended process registry is the
support for searches á la ets:select() and ets:fold(). Unfortunately,
properties, names and counters are not consistently represented,
which led to a proliferation of search functions, special guards,
etc.

We propose to weigh heavily on Erlang’s pattern-matching
capabilities, and use the following representation:

{Key, Pid, Value}

Key :: {Type, Context, Name}

Type :: n | p | c | a

Context :: g | l

Types and context identifiers are abbreviated mainly in order to
get more compact query expressions and listings. There is no
efficiency gain as atoms are passed by reference both locally and
between Erlang nodes.

The types above are:

n = name

p = property

c = counter

a = aggregated counter

The contexts are simply:

g = global

l = local

We want to store all values in the same table in order to effi-
ciently filter out objects based on different criteria. But to distin-
guish between unique and non-unique keys, we need to make a
small concession: we must add something to the key to allow
different processes to register the same key. It is simplest to use
the Pid:

Code example 8: Storage structure of unique objects

{{Key, Pid}, Pid, Value}

To preserve symmetry, we wrap unique keys in a similar way, but
insert a constant rather than a Pid. We chose the Type atom:

Code example 9: Storage structure of non-unique objects

{{Key, Type}, Pid, Value}

We want to hide this wrapper in the search functions, but this is a
rather straightforward rewrite of the select pattern. As it needs to
be performed at execution time, it will add startup overhead to
any query from the Erlang shell.

8.6 Reverse mapping

For each object inserted, we also insert a reverse mapping object,
{Pid, Key}. This allows us to efficiently retrieve all objects be-
longing to a given process, e.g. when the process dies. Writing
multiple objects does not mean jeopardizing thread safety, if
we’re careful. The reverse mapping object is unique, and will
only exist in that table if the regular object is there. Thus, a proc-
ess can register a property atomically by calling the function:

Code example 10: Inserting property object and reverse mapping

ets:insert_new(

 ?TAB, [{{Key,self()}, self(), Value},

 {{self(), Key}}]).

This function call will return false if the object already existed.
The ‘proc’ library raises an exception if a process tries to register
a property twice. We see no reason to change that.

8.7 Handling monitors

If all registrations go through the server, it has the option to start a
monitor for each object, but it only needs one monitor per proc-
ess. It is not expensive to have lots of monitors, but it can be ex-
pensive to handle lots of ‘DOWN’ messages from each process.

We ensure that we have only one monitor for each process by
inserting a marker in the table. We apply a test-set operation on
the marker using ets:insert_new(), and set a monitor if needed.

Code example 11: Setting a monitor if required (server-side)

case ets:insert_new(?TAB, {Pid}) of

 false -> ok;

 true -> erlang:monitor(process, Pid)

end.

In the case where the client registers a property (and does not talk
to the server, it performs a similar check:

Code example 12: Setting a monitor if required (client-side)

case ets:insert_new(?TAB, {self()}) of

 false -> ok;

 true -> cast(monitor_me)

end.

One obvious drawback is that we will never demonitor – once
monitored, processes will stay monitored. We could address that
by making the marker a counter, and doing cleanup when the
counter reaches 0. But if the registry were to be fully integrated
with Erlang/OTP, there will not be a need for an explicit monitor.

8.8 Aggregated counters

Aggregated counters are similar to normal counters, but are up-
dated automatically, whenever a regular counter with the same
name (and scope) is updated:

Code example 13: Updating aggregated counters

update_counter({c,g,_} = K, Incr) ->

 leader_call({update_counter,K,self(),Incr});

update_counter({c,l,Name}, Incr) ->

 Prev = ets:update_counter(

 ?TAB, {{c,l,Name},self()}, Incr),

 catch ets:update_counter(

 ?TAB, {{a,l,Name},a}, Incr),

 Prev.

To keep the overhead of update_counter() predictable, we have
made aggregated counters unique. There will be at most one ag-
gregated counter to update for each update_counter() call.

8.9 QLC

We have added a QLC table generator, to support the use of
Query List Comprehensions. Apart from the obvious benefit of
supporting very complex queries, QLC also makes all queries
reentrant, hiding the continuation-passing loop that would other-
wise be needed.

9. Demonstration
We made gproc part of the kernel application in an OTP R11B-5
build, and instrumented a few modules to automatically register
some properties with gproc.

We illustrate how we can now rather easily display key char-
acteristics of the system – in this case a node started with the
command ‘erl –boot start_sasl’.

Code example 14: Querying supervisor flags (using gproc)

=PROGRESS REPORT==== 5-Jul-2007…

 application: sasl

 started_at: nonode@nohost

Eshell V5.5.5 (abort with ^G)

1> Q1 = qlc:q([{P,Fs} ||

 {{p,l,supflags},P,Fs} <-

 gproc:table(props)]).

{qlc_handle,{qlc_lc,…}}

2> qlc:eval(Q1).

[{<0.10.0>,{one_for_all,0,1}},

 {<0.27.0>,{one_for_one,4,3600}},

 {<0.32.0>,{one_for_one,0,1}},

 {<0.33.0>,{one_for_one,4,3600}}]

Here, we obtain a concise listing of the supervisor restart strate-
gies in the system. This also implicitly gives us all supervisors,
but that particular information can also be retrieved by searching
on behaviour:

Code example 15: Finding all processes with
behaviour: supervisor (using gproc)

3> Q2 = qlc:q([P ||

 {{p,l,behaviour},P,supervisor} <-

 gproc:table(props)]).

{qlc_handle,…}

4> qlc:eval(Q2).

[<0.10.0>,<0.27.0>,<0.32.0>,<0.33.0>]

Going back to the example in Chapter 5.1, we have thus far regis-
tered information that almost gives us the answer we seek:

Code example 16: Finding processes to suspend (using gproc)

8> rr(code:lib_dir(stdlib) ++

 "/src/supervisor.erl").

[child,state]

12> Q3 = qlc:q([{C#child.pid,S,

 C#child.modules} ||

 {{p,l,{childspec,_}},S,C} <-

 gproc:table(props)]).

{qlc_handle,…}

13> qlc:eval(Q3).

[{<0.34.0>,<0.33.0>,dynamic},

 {<0.20.0>,<0.10.0>,[code]},

 {<0.19.0>,<0.10.0>,[file,file_server,

 file_io_server,

 prim_file]},

 {<0.18.0>,<0.10.0>,[global_group]},

 {<0.12.0>,<0.10.0>,[global]},

 {<0.9.0>,<0.10.0>,[gproc]},

 {<0.16.0>,<0.10.0>,[inet_db]},

 {<0.26.0>,<0.10.0>,[kernel_config]},

 {<0.27.0>,<0.10.0>,[kernel]},

 {undefined,<0.10.0>,[erl_distribution]},

 {<0.35.0>,<0.33.0>,[overload]},

 {<0.36.0>,<0.32.0>,[]},

 {<0.11.0>,<0.10.0>,[rpc]},

 {<0.33.0>,<0.32.0>,[sasl]},

 {<0.21.0>,<0.10.0>,[user_sup]}]

We note that the information needed for the release handler is
readily available, as is the rest of the child start specification.

The sketched solution in Chapter 5.1 is difficult to implement
in practice, since the supervisor module does not get to execute
code in the child’s process. Thus, it cannot easily insert a property
in its context. A more serious disadvantage to this is that the su-
pervisor cannot tell a restarted process why it restarted, or how
many times it has done so. This makes it difficult to do anything
different during an escalated restart. Using gproc, the supervisor
could store such information in its own context, and make the
information available.

9.1 Registration by proxy

We have also modified the sys module so that a process could
be asked to register a property:

Code example 17: Registration by proxy (using gproc + sys)

1> gproc:info(whereis(gproc),gproc).

{gproc,[{{p,l,behaviour}, gen_leader}]}

2> sys:reg(gproc, {p,l,test}, 17).

true

3> gproc:info(whereis(gproc),gproc).

{gproc,[{{p,l,behaviour},gen_leader},

 {{p,l,test},17}]}

The function sys:handle_system_msg/6, which is the recom-
mended way to handle system messages, will call the function
Mod:system_reg(Misc, Key, Value), if exported; otherwise, it
will try to register directly. The callback allows behaviours to
selectively disable registration by proxy.

9.2 Performance

It is important to assess the cost of collecting and indexing meta-
data. While it would be very convenient to have all forms of proc-
ess and application characteristics indexed and readily available,
the overhead involved might not be justifiable. For demonstration
purposes, we used gproc to publish behaviour information, child
specifications, supervision flags, etc. This served the point of
illustrating how much can potentially be harvested.

For the cost comparison, we compare performance with a
lightweight alternative (e.g. normal registration, or storing a sim-
ple object in an ets table), and with sysProc, the predecessor to
gproc.

9.2.1 Property registration

Lightweight alternative: storing a mapping and a reverse mapping
in an ets table. We measure storing 100 such objects (pairs).

Ets gproc sysProc
1 3.0 5.4

9.2.2 Local name registration

Lightweight alternative: the register()/unregister() BIFs. We
measure the cost of registering and unregistering a name 100
times, as the BIFs cannot register multiple names.

register BIFs gproc sysProc
1 68.8 74.7

The big difference here can be attributed to gproc and sysProc
having to use a gen_server to prevent race conditions, while the
register BIFs execute atomically inside the VM (in the non-SMP
version, even without mutexes). If the ability to register any Er-
lang term, rather than just an atom, would be introduced as a BIF,
a slight performance penalty should be expected, but not nearly as
much as these figures suggest.

It should also be noted that register()/unregister() is extremely
cheap. On most modern machines, even in gproc and sysProc,
local name registration takes significantly less than 100 usec.

9.2.3 Global name registration

Lightweight alternative: global:register_name(). We measure with
four nodes running on the same machine, doing 100 regis-
ter/unregister operations, since ‘global’ actually issues a warning
each time a name is registered to a process that already has a reg-
istered name.

Global gproc sysProc
1 0.16 N/A

Obviously, the “lightweight” alternative is not so lightweight after
all. Global registration using gen_leader is much faster than the
voting mechanism used in global. sysProc has no global registra-
tion facilities.

10. Future work
At IMS Gateways, it still remains to be determined whether the
gproc prototype can replace the existing extended process regis-
try. It would also be interesting to study whether the local part of
gproc could be implemented in the runtime system, for better
performance.

The gproc prototype is based on the gen_leader behaviour.
Gen_leader was developed by Arts and Wiger [7], and subse-
quently re-written and verified by Arts and Svensson [8].
Gen_leader makes it quite straightforward to implement a set of
servers that manage both global and local scope.

While developing the gproc module, we encountered a prob-
lem with gen_leader: if there is only one known leader candidate,

gen_leader will still enter an election loop and wait for responses
from other candidates. Leader election is triggered by such re-
sponses, which will, of course, never arrive. Luckily, the fix is
trivial: when there is only one candidate, that candidate can elect
itself and skip the negotiation.

A more serious problem with using gen_leader is that it re-
quires advance knowledge of all candidate nodes. However, in
our prototype integration with OTP, we want to start the process
registry as soon as possible – before the Erlang distribution is
started. To do this, we modified gen_leader to start in “local-
only” mode, and wait for the user to trigger election mode. This
extension of gen_leader has not been verified, but seems to work
satisfactorily for the purposes of the prototype.

Perhaps even more serious is gen_leader’s lack of support for
dynamically reconfigured networks, and for de-conflicting the
states of two leaders (which is presumably the most difficult part
of adding nodes on the fly). Adding this type of support to
gen_leader is a topic for further research. We hope that this proto-
type will be able to spark interest in such an effort.

Acknowledgments
I want to thank John Hughes and Thomas Arts, for ruthlessly
revealing fatal flaws, using their amazing QuickCheck tool, in the
very first prototype; to Thomas Arts and Hans Svensson for bril-
liant work with gen_leader; to Kurt Jonsson and Mats Cronqvist
for many fruitful design discussions; and to Bo Fröderberg, Bo
Bergström and Mats Andersson for interpreting the specific re-
quirements from the application development side.

References
[1] Ulf Wiger, “Four-fold Increase in Productivity and Quality”,

FemSYS, Munich, Germany, 2001
http://www.erlang.se/publications/Ulf_Wiger.ppt

[2] Ulf Wiger, “Structured Network Programming”,
Erlang User Conference, Stockholm, Sweden, 2005
http://www.erlang.se/euc/05/1500Wiger.ppt

[3] Mats Cronqvist, “Troubleshooting a Large Erlang System”, ACM
SIGPLAN Erlang Workshop, Pittsburgh, USA, 2004
http://doi.acm.org/10.1145/1022471.1022474

[4] Erlang/OTP Design Principles,
http://www.erlang.org/doc/design_principles/part_frame.html

[5] Thomas Lindgren, “Atom Garbage Collection”, ACM SIGPLAN
Erlang Workshop, Tallinn, Estonia, 2005
http://doi.acm.org/10.1145/1088361.1088369

[6] Ulf Wiger, gproc Source Code Repository (Subversion)
http://svn.ulf.wiger.net/gproc

 [7] Arts, Claessen, Svensson, “Semi-formal Development of a Fault-
Tolerant Leader Election Protocol in Erlang”
Fourth International Workshop on Formal Approaches to Testing
Software, volume 3395 of LNCS, pages 140-154 Linz, Austria, 2004
http://www.ituniv.se/~arts/papers/fates04.pdf

[8] Svensson, Arts, “A New Leader Election Implementation”
ACM SIGPLAN Erlang Workshop, Tallinn, Estonia, 2005
http://doi.acm.org/10.1145/1088361.1088368

http://www.erlang.se/publications/Ulf_Wiger.ppt
http://www.erlang.se/euc/05/1500Wiger.ppt
http://doi.acm.org/10.1145/1022471.1022474
http://www.erlang.org/doc/design_principles/part_frame.html
http://doi.acm.org/10.1145/1088361.1088369
http://svn.ulf.wiger.net/gproc
http://www.ituniv.se/%7Earts/papers/fates04.pdf
http://doi.acm.org/10.1145/1088361.1088368

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

