1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- //
- // Bit manipulations is a very powerful tool just also from Zig.
- // Since the dawn of the computer age, numerous algorithms have been
- // developed that solve tasks solely by moving, setting, or logically
- // combining bits.
- //
- // Zig also uses direct bit manipulation in its standard library for
- // functions where possible. And it is often possible with calculations
- // based on integers.
- //
- // Often it is not easy to understand at first glance what exactly these
- // algorithms do when only "numbers" in memory areas change outwardly.
- // But it must never be forgotten that the numbers only represent the
- // interpretation of the bit sequences.
- //
- // Quasi the reversed case we have otherwise, namely that we represent
- // numbers in bit sequences.
- //
- // We remember: 1 byte = 8 bits = 11111111 = 255 decimal = FF hex.
- //
- // Zig provides all the necessary functions to change the bits inside
- // a variable. It is distinguished whether the bit change leads to an
- // overflow or not. The details are in the Zig documentation in section
- // 10.1 "Table of Operators".
- //
- // Here are some examples of how the bits of variables can be changed:
- //
- // const numOne: u8 = 15; // = 0000 1111
- // const numTwo: u8 = 245; // = 1111 0101
- //
- // const res1 = numOne >> 4; // = 0000 0000 - shift right
- // const res2 = numOne << 4; // = 1111 0000 - shift left
- // const res3 = numOne & numTwo; // = 0000 0101 - and
- // const res4 = numOne | numTwo; // = 1111 1111 - or
- // const res5 = numOne ^ numTwo; // = 1111 1010 - xor
- //
- //
- // To familiarize ourselves with bit manipulation, we start with a simple
- // but often underestimated function and then add other exercises in
- // loose order.
- //
- // The following text contains excerpts from Wikipedia.
- //
- // Swap
- // In computer programming, the act of swapping two variables refers to
- // mutually exchanging the values of the variables. Usually, this is
- // done with the data in memory. For example, in a program, two variables
- // may be defined thus (in pseudocode):
- //
- // data_item x := 1
- // data_item y := 0
- //
- // swap (x, y);
- //
- // After swap() is performed, x will contain the value 0 and y will
- // contain 1; their values have been exchanged. The simplest and probably
- // most widely used method to swap two variables is to use a third temporary
- // variable:
- //
- // define swap (x, y)
- // temp := x
- // x := y
- // y := temp
- //
- // However, with integers we can also achieve the swap function simply by
- // bit manipulation. To do this, the variables are mutually linked with xor
- // and the result is the same.
- const std = @import("std");
- const print = std.debug.print;
- pub fn main() !void {
- // As in the example above, we use 1 and 0 as values for x and y
- var x: u8 = 1;
- var y: u8 = 0;
- // Now we swap the values of the two variables by doing xor on them
- x ^= y;
- y ^= x;
- // What must be written here?
- ???;
- print("x = {d}; y = {d}\n", .{ x, y });
- }
- // This variable swap takes advantage of the fact that the value resulting
- // from the xor of two values contains both of these values.
- // This circumstance was (and still is) sometimes used for encryption.
- // Value XOR Key = Crypto. => Crypto XOR Key = Value.
- // Since this can be swapped arbitrarily, you can swap two variables in this way.
- //
- // For Crypto it is better not to use this, but in sorting algorithms like
- // Bubble Sort it works very well.
|