123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147 |
- // So far in Ziglings, we've seen how for loops can be used to
- // repeat calculations across an array in several ways.
- //
- // For loops are generally great for this kind of task, but
- // sometimes they don't fully utilize the capabilities of the
- // CPU.
- //
- // Most modern CPUs can execute instructions in which SEVERAL
- // calculations are performed WITHIN registers at the SAME TIME.
- // These are known as "single instruction, multiple data" (SIMD)
- // instructions. SIMD instructions can make code significantly
- // more performant.
- //
- // To see why, imagine we have a program in which we take the
- // square root of four (changing) f32 floats.
- //
- // A simple compiler would take the program and produce machine code
- // which calculates each square root sequentially. Most registers on
- // modern CPUs have 64 bits, so we could imagine that each float moves
- // into a 64-bit register, and the following happens four times:
- //
- // 32 bits 32 bits
- // +-------------------+
- // register | 0 | x |
- // +-------------------+
- //
- // |
- // [SQRT instruction]
- // V
- //
- // +-------------------+
- // | 0 | sqrt(x) |
- // +-------------------+
- //
- // Notice that half of the register contains blank data to which
- // nothing happened. What a waste! What if we were able to use
- // that space instead? This is the idea at the core of SIMD.
- //
- // Most modern CPUs contain specialized registers with at least 128 bits
- // for performing SIMD instructions. On a machine with 128-bit SIMD
- // registers, a smart compiler would probably NOT issue four sqrt
- // instructions as above, but instead pack the floats into a single
- // 128-bit register, then execute a single "packed" sqrt
- // instruction to do ALL the square root calculations at once.
- //
- // For example:
- //
- //
- // 32 bits 32 bits 32 bits 32 bits
- // +---------------------------------------+
- // register | 4.0 | 9.0 | 25.0 | 49.0 |
- // +---------------------------------------+
- //
- // |
- // [SIMD SQRT instruction]
- // V
- //
- // +---------------------------------------+
- // register | 2.0 | 3.0 | 5.0 | 7.0 |
- // +---------------------------------------+
- //
- // Pretty cool, right?
- //
- // Code with SIMD instructions is usually more performant than code
- // without SIMD instructions. Zig cares a lot about performance,
- // so it has built-in support for SIMD! It has a data structure that
- // directly supports SIMD instructions:
- //
- // +-----------+
- // | Vectors |
- // +-----------+
- //
- // Operations performed on vectors in Zig will be done in parallel using
- // SIMD instructions, whenever possible.
- //
- // Defining vectors in Zig is straightforwards. No library import is needed.
- const v1 = @Vector(3, i32) { 1, 10, 100};
- const v2 = @Vector(3, f32) {2.0, 3.0, 5.0};
- // Vectors support the same builtin operators as their underlying base types.
- const v3 = v1 + v1; // { 2, 20, 200};
- const v4 = v2 * v2; // { 4.0, 9.0, 25.0};
- // Intrinsics that apply to base types usually extend to vectors.
- const v5 : @Vector(3, f32) = @floatFromInt(v3); // { 2.0, 20.0, 200.0}
- const v6 = v4 - v5; // { 2.0, -11.0, -175.0}
- const v7 = @abs(v6); // { 2.0, 11.0, 175.0}
- // We can make constant vectors, and reduce vectors.
- const v8 : @Vector(4, u8) = @splat(2); // { 2, 2, 2, 2}
- const v8_sum = @reduce(.Add, v8); // 8
- const v8_min = @reduce(.Min, v8); // 2
- // Fixed-length arrays can be automatically assigned to vectors (and vice-versa).
- const single_digit_primes = [4] i8 {2, 3, 5, 7};
- const prime_vector : @Vector(4, i8) = single_digit_primes;
- // Now let's use vectors to simplify and optimize some code!
- //
- // Ewa is writing a program in which they frequently want to compare
- // two lists of four f32s. Ewa expects the lists to be similar, and
- // wants to determine the largest pairwise difference between the lists.
- //
- // Ewa wrote the following function to figure this out.
- fn calcMaxPairwiseDiffOld( list1 : [4] f32, list2 : [4] f32) f32 {
- var max_diff : f32 = 0;
- for (list1, list2) |n1, n2| {
- const abs_diff = @abs(n1 - n2);
- if (abs_diff > max_diff) {
- max_diff = abs_diff;
- }
- }
- return max_diff;
- }
- // Ewa heard about vectors in Zig, and started writing a new vector
- // version of the function, but has got stuck!
- //
- // Help Ewa finish the vector version! The examples above should help.
- const Vec4 = @Vector(4, f32);
- fn calcMaxPairwiseDiffNew( a : Vec4, b : Vec4) f32 {
- const abs_diff_vec = ???;
- const max_diff = @reduce(???, abs_diff_vec);
- return max_diff;
- }
- // Quite the simplification! We could even write the function in one line
- // and it would still be readable.
- //
- // Since the entire function is now expressed in terms of vector operations,
- // the Zig compiler will easily be able to compile it down to machine code
- // which utilizes the all-powerful SIMD instructions and does a lot of the
- // computation in parallel.
- const std = @import("std");
- const print = std.debug.print;
- pub fn main() void {
- const l1 = [4] f32 { 3.141, 2.718, 0.577, 1.000};
- const l2 = [4] f32 { 3.154, 2.707, 0.591, 0.993};
- const mpd_old = calcMaxPairwiseDiffOld(l1, l2);
- const mpd_new = calcMaxPairwiseDiffNew(l1, l2);
- print("Max difference (old fn): {d: >5.3}\n", .{mpd_old});
- print("Max difference (new fn): {d: >5.3}\n", .{mpd_new});
- }
|