064_builtins.zig 3.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283
  1. //
  2. // The Zig compiler provides "builtin" functions. You've already
  3. // gotten used to seeing an @import() at the top of every
  4. // Ziglings exercise.
  5. //
  6. // We've also seen @intCast() in "016_for2.zig", "058_quiz7.zig";
  7. // and @enumToInt() in "036_enums2.zig".
  8. //
  9. // Builtins are special because they are intrinsic to the Zig
  10. // language itself (as opposed to being provided in the standard
  11. // library). They are also special because they can provide
  12. // functionality that is only possible with help from the
  13. // compiler, such as type introspection (the ability to examine
  14. // type properties from within a program).
  15. //
  16. // Zig contains over 100 builtin functions. We're certainly
  17. // not going to cover them all, but we can look at some
  18. // interesting ones.
  19. //
  20. // Before we begin, know that many builtin functions have
  21. // parameters marked as "comptime". It's probably fairly clear
  22. // what we mean when we say that these parameters need to be
  23. // "known at compile time." But rest assured we'll be doing the
  24. // "comptime" subject real justice soon.
  25. //
  26. const print = @import("std").debug.print;
  27. pub fn main() void {
  28. // The second builtin, alphabetically, is:
  29. // @addWithOverflow(a: anytype, b: anytype) struct { @TypeOf(a, b), u1 }
  30. // * 'a' and 'b' are numbers of anytype.
  31. // * The return value is a tuple with the result and a possible overflow bit.
  32. //
  33. // Let's try it with a tiny 4-bit integer size to make it clear:
  34. const a: u4 = 0b1101;
  35. const b: u4 = 0b0101;
  36. const my_result = @addWithOverflow(a, b);
  37. // Check out our fancy formatting! b:0>4 means, "print
  38. // as a binary number, zero-pad right-aligned four digits."
  39. // The print() below will produce: "1101 + 0101 = 0010 (true)".
  40. print("{b:0>4} + {b:0>4} = {b:0>4} ({s})", .{ a, b, my_result[0], if (my_result[1] == 1) "true" else "false" });
  41. // Let's make sense of this answer. The value of 'b' in decimal is 5.
  42. // Let's add 5 to 'a' but go one by one and see where it overflows:
  43. //
  44. // a | b | result | overflowed?
  45. // ----------------------------------
  46. // 1101 + 0001 = 1110 | false
  47. // 1110 + 0001 = 1111 | false
  48. // 1111 + 0001 = 0000 | true (the real answer is 10000)
  49. // 0000 + 0001 = 0001 | false
  50. // 0001 + 0001 = 0010 | false
  51. //
  52. // In the last two lines the value of 'a' is corrupted because there was
  53. // an overflow in line 3, but the operations of lines 4 and 5 themselves
  54. // do not overflow.
  55. // There is a difference between
  56. // - a value, that overflowed at some point and is now corrupted
  57. // - a single operation that overflows and maybe causes subsequent errors
  58. // In practise we usually notice the overflowed value first and have to work
  59. // our way backwards to the operation that caused the overflow.
  60. //
  61. // If there was no overflow at all while adding 5 to a, what value would
  62. // 'my_result' hold? Write the answer in into 'expected_result'.
  63. const expected_result: u8 = ???;
  64. print(". Without overflow: {b:0>8}. ", .{expected_result});
  65. print("Furthermore, ", .{});
  66. // Here's a fun one:
  67. //
  68. // @bitReverse(integer: anytype) T
  69. // * 'integer' is the value to reverse.
  70. // * The return value will be the same type with the
  71. // value's bits reversed!
  72. //
  73. // Now it's your turn. See if you can fix this attempt to use
  74. // this builtin to reverse the bits of a u8 integer.
  75. const input: u8 = 0b11110000;
  76. const tupni: u8 = @bitReverse(input, tupni);
  77. print("{b:0>8} backwards is {b:0>8}.\n", .{ input, tupni });
  78. }