|
@@ -10,16 +10,16 @@
|
|
// These are known as "single instruction, multiple data" (SIMD)
|
|
// These are known as "single instruction, multiple data" (SIMD)
|
|
// instructions. SIMD instructions can make code significantly
|
|
// instructions. SIMD instructions can make code significantly
|
|
// more performant.
|
|
// more performant.
|
|
-//
|
|
|
|
|
|
+//
|
|
// To see why, imagine we have a program in which we take the
|
|
// To see why, imagine we have a program in which we take the
|
|
// square root of four (changing) f32 floats.
|
|
// square root of four (changing) f32 floats.
|
|
-//
|
|
|
|
|
|
+//
|
|
// A simple compiler would take the program and produce machine code
|
|
// A simple compiler would take the program and produce machine code
|
|
// which calculates each square root sequentially. Most registers on
|
|
// which calculates each square root sequentially. Most registers on
|
|
// modern CPUs have 64 bits, so we could imagine that each float moves
|
|
// modern CPUs have 64 bits, so we could imagine that each float moves
|
|
// into a 64-bit register, and the following happens four times:
|
|
// into a 64-bit register, and the following happens four times:
|
|
//
|
|
//
|
|
-// 32 bits 32 bits
|
|
|
|
|
|
+// 32 bits 32 bits
|
|
// +-------------------+
|
|
// +-------------------+
|
|
// register | 0 | x |
|
|
// register | 0 | x |
|
|
// +-------------------+
|
|
// +-------------------+
|
|
@@ -35,7 +35,7 @@
|
|
// Notice that half of the register contains blank data to which
|
|
// Notice that half of the register contains blank data to which
|
|
// nothing happened. What a waste! What if we were able to use
|
|
// nothing happened. What a waste! What if we were able to use
|
|
// that space instead? This is the idea at the core of SIMD.
|
|
// that space instead? This is the idea at the core of SIMD.
|
|
-//
|
|
|
|
|
|
+//
|
|
// Most modern CPUs contain specialized registers with at least 128 bits
|
|
// Most modern CPUs contain specialized registers with at least 128 bits
|
|
// for performing SIMD instructions. On a machine with 128-bit SIMD
|
|
// for performing SIMD instructions. On a machine with 128-bit SIMD
|
|
// registers, a smart compiler would probably NOT issue four sqrt
|
|
// registers, a smart compiler would probably NOT issue four sqrt
|
|
@@ -50,11 +50,11 @@
|
|
// +---------------------------------------+
|
|
// +---------------------------------------+
|
|
// register | 4.0 | 9.0 | 25.0 | 49.0 |
|
|
// register | 4.0 | 9.0 | 25.0 | 49.0 |
|
|
// +---------------------------------------+
|
|
// +---------------------------------------+
|
|
-//
|
|
|
|
|
|
+//
|
|
// |
|
|
// |
|
|
// [SIMD SQRT instruction]
|
|
// [SIMD SQRT instruction]
|
|
// V
|
|
// V
|
|
-//
|
|
|
|
|
|
+//
|
|
// +---------------------------------------+
|
|
// +---------------------------------------+
|
|
// register | 2.0 | 3.0 | 5.0 | 7.0 |
|
|
// register | 2.0 | 3.0 | 5.0 | 7.0 |
|
|
// +---------------------------------------+
|
|
// +---------------------------------------+
|
|
@@ -74,26 +74,26 @@
|
|
// SIMD instructions, whenever possible.
|
|
// SIMD instructions, whenever possible.
|
|
//
|
|
//
|
|
// Defining vectors in Zig is straightforwards. No library import is needed.
|
|
// Defining vectors in Zig is straightforwards. No library import is needed.
|
|
-const v1 = @Vector(3, i32) { 1, 10, 100};
|
|
|
|
-const v2 = @Vector(3, f32) {2.0, 3.0, 5.0};
|
|
|
|
|
|
+const v1 = @Vector(3, i32){ 1, 10, 100 };
|
|
|
|
+const v2 = @Vector(3, f32){ 2.0, 3.0, 5.0 };
|
|
|
|
|
|
// Vectors support the same builtin operators as their underlying base types.
|
|
// Vectors support the same builtin operators as their underlying base types.
|
|
const v3 = v1 + v1; // { 2, 20, 200};
|
|
const v3 = v1 + v1; // { 2, 20, 200};
|
|
const v4 = v2 * v2; // { 4.0, 9.0, 25.0};
|
|
const v4 = v2 * v2; // { 4.0, 9.0, 25.0};
|
|
|
|
|
|
// Intrinsics that apply to base types usually extend to vectors.
|
|
// Intrinsics that apply to base types usually extend to vectors.
|
|
-const v5 : @Vector(3, f32) = @floatFromInt(v3); // { 2.0, 20.0, 200.0}
|
|
|
|
-const v6 = v4 - v5; // { 2.0, -11.0, -175.0}
|
|
|
|
-const v7 = @abs(v6); // { 2.0, 11.0, 175.0}
|
|
|
|
|
|
+const v5: @Vector(3, f32) = @floatFromInt(v3); // { 2.0, 20.0, 200.0}
|
|
|
|
+const v6 = v4 - v5; // { 2.0, -11.0, -175.0}
|
|
|
|
+const v7 = @abs(v6); // { 2.0, 11.0, 175.0}
|
|
|
|
|
|
// We can make constant vectors, and reduce vectors.
|
|
// We can make constant vectors, and reduce vectors.
|
|
-const v8 : @Vector(4, u8) = @splat(2); // { 2, 2, 2, 2}
|
|
|
|
-const v8_sum = @reduce(.Add, v8); // 8
|
|
|
|
-const v8_min = @reduce(.Min, v8); // 2
|
|
|
|
|
|
+const v8: @Vector(4, u8) = @splat(2); // { 2, 2, 2, 2}
|
|
|
|
+const v8_sum = @reduce(.Add, v8); // 8
|
|
|
|
+const v8_min = @reduce(.Min, v8); // 2
|
|
|
|
|
|
// Fixed-length arrays can be automatically assigned to vectors (and vice-versa).
|
|
// Fixed-length arrays can be automatically assigned to vectors (and vice-versa).
|
|
-const single_digit_primes = [4] i8 {2, 3, 5, 7};
|
|
|
|
-const prime_vector : @Vector(4, i8) = single_digit_primes;
|
|
|
|
|
|
+const single_digit_primes = [4]i8{ 2, 3, 5, 7 };
|
|
|
|
+const prime_vector: @Vector(4, i8) = single_digit_primes;
|
|
|
|
|
|
// Now let's use vectors to simplify and optimize some code!
|
|
// Now let's use vectors to simplify and optimize some code!
|
|
//
|
|
//
|
|
@@ -103,8 +103,8 @@ const prime_vector : @Vector(4, i8) = single_digit_primes;
|
|
//
|
|
//
|
|
// Ewa wrote the following function to figure this out.
|
|
// Ewa wrote the following function to figure this out.
|
|
|
|
|
|
-fn calcMaxPairwiseDiffOld( list1 : [4] f32, list2 : [4] f32) f32 {
|
|
|
|
- var max_diff : f32 = 0;
|
|
|
|
|
|
+fn calcMaxPairwiseDiffOld(list1: [4]f32, list2: [4]f32) f32 {
|
|
|
|
+ var max_diff: f32 = 0;
|
|
for (list1, list2) |n1, n2| {
|
|
for (list1, list2) |n1, n2| {
|
|
const abs_diff = @abs(n1 - n2);
|
|
const abs_diff = @abs(n1 - n2);
|
|
if (abs_diff > max_diff) {
|
|
if (abs_diff > max_diff) {
|
|
@@ -120,7 +120,7 @@ fn calcMaxPairwiseDiffOld( list1 : [4] f32, list2 : [4] f32) f32 {
|
|
// Help Ewa finish the vector version! The examples above should help.
|
|
// Help Ewa finish the vector version! The examples above should help.
|
|
|
|
|
|
const Vec4 = @Vector(4, f32);
|
|
const Vec4 = @Vector(4, f32);
|
|
-fn calcMaxPairwiseDiffNew( a : Vec4, b : Vec4) f32 {
|
|
|
|
|
|
+fn calcMaxPairwiseDiffNew(a: Vec4, b: Vec4) f32 {
|
|
const abs_diff_vec = ???;
|
|
const abs_diff_vec = ???;
|
|
const max_diff = @reduce(???, abs_diff_vec);
|
|
const max_diff = @reduce(???, abs_diff_vec);
|
|
return max_diff;
|
|
return max_diff;
|
|
@@ -138,8 +138,8 @@ const std = @import("std");
|
|
const print = std.debug.print;
|
|
const print = std.debug.print;
|
|
|
|
|
|
pub fn main() void {
|
|
pub fn main() void {
|
|
- const l1 = [4] f32 { 3.141, 2.718, 0.577, 1.000};
|
|
|
|
- const l2 = [4] f32 { 3.154, 2.707, 0.591, 0.993};
|
|
|
|
|
|
+ const l1 = [4]f32{ 3.141, 2.718, 0.577, 1.000 };
|
|
|
|
+ const l2 = [4]f32{ 3.154, 2.707, 0.591, 0.993 };
|
|
const mpd_old = calcMaxPairwiseDiffOld(l1, l2);
|
|
const mpd_old = calcMaxPairwiseDiffOld(l1, l2);
|
|
const mpd_new = calcMaxPairwiseDiffNew(l1, l2);
|
|
const mpd_new = calcMaxPairwiseDiffNew(l1, l2);
|
|
print("Max difference (old fn): {d: >5.3}\n", .{mpd_old});
|
|
print("Max difference (old fn): {d: >5.3}\n", .{mpd_old});
|