module secured.kdf; import std.base64; import std.conv; import std.typecons; import std.format; import std.string; import deimos.openssl.evp; import deimos.openssl.kdf; import secured.openssl; import secured.hash; import secured.random; import secured.symmetric; import secured.util; public enum uint defaultKdfIterations = 1_048_576; public enum ushort defaultSCryptR = 8; public enum ushort defaultSCryptP = 1; public enum ulong maxSCryptMemory = 1_074_790_400; public enum KdfAlgorithm : ubyte { None = 0, PBKDF2 = 1, HKDF = 2, SCrypt = 3, Argon2 = 4, Default = SCrypt, } public enum VerifyPasswordResult { /// /// The password verification was successful. /// Success, /// /// The password verification failed. /// Failure, /// /// The password was successfully verified, but needs to be rehashed to use updated hashing parameters. /// Rehash, } @safe public struct HashedPassword { /// /// The hashing algorithm used to secure the password. /// public KdfAlgorithm algorithm; /// /// The version of the hash parameters used to secure the password. /// public short parameterVersion; /// /// The salt used by the hashing function. /// public ubyte[] salt; /// /// The hashed password /// public ubyte[] derived; /// /// Constructs a HashedPassword object from the provided hashing parameters. /// /// The hashed password. /// The salt used by the hashing function. /// The hashing algorithm used to secure the password. /// The version of the hash parameters used to secure the password. package this(ubyte[] derived, ubyte[] salt, KdfAlgorithm algorithm, ushort paramVersion) { this.algorithm = algorithm; this.parameterVersion = paramVersion; this.salt = salt; this.derived = derived; } /// /// Constructs a HashedPassword from an encoded string. /// /// The encoded string. /// A HashedPassword object containing the decoded string values. /// The provided string is invalid. public this(string encoded) { auto parts = encoded.split("."); if (parts.length != 4) throw new CryptographicException("Invalid password string provided."); this.algorithm = to!KdfAlgorithm(to!int(parts[0])); this.parameterVersion = to!ushort(parts[1]); this.salt = Base64.decode(parts[2]); this.derived = Base64.decode(parts[3]); } /// /// Creates string containing the encoded password from the HashedPassword. /// /// The encoded password string public string toString() { return to!string(join([to!string(to!int(algorithm)), to!string(parameterVersion), Base64.encode(salt), Base64.encode(derived)], ".")); } } @safe public HashedPassword securePassword(string password, const ubyte[] pepper, KdfAlgorithm algorithm = KdfAlgorithm.Default) { if (algorithm == KdfAlgorithm.HKDF) throw new CryptographicException("KdfAlgorithm.HKDF is not supported for password security."); if (algorithm == KdfAlgorithm.PBKDF2) { ubyte[] salt = random(32); return HashedPassword(pbkdf2_ex(password, salt ~ pepper, HashAlgorithm.Default, 64, defaultKdfIterations), salt, algorithm, 1); } if (algorithm == KdfAlgorithm.SCrypt) { ubyte[] salt = random(32); return HashedPassword(scrypt_ex(password, salt ~ pepper, 64), salt, algorithm, 1); } if (algorithm == KdfAlgorithm.Argon2) throw new CryptographicException("Argon2 is not supported."); throw new CryptographicException("KdfAlgorithm.None is not supported for password security."); } @safe public VerifyPasswordResult verifyPassword(string suppliedPassword, HashedPassword storedPassword, const ubyte[] pepper) { if (storedPassword.algorithm == KdfAlgorithm.HKDF) throw new CryptographicException("KdfAlgorithm.HKDF is not supported for password security."); if (storedPassword.algorithm == KdfAlgorithm.PBKDF2 && storedPassword.parameterVersion == 1) { if (pbkdf2_verify_ex(storedPassword.derived, suppliedPassword, storedPassword.salt ~ pepper, HashAlgorithm.Default, 64, defaultKdfIterations)) return VerifyPasswordResult.Success; } else if (storedPassword.algorithm == KdfAlgorithm.PBKDF2 && storedPassword.parameterVersion == 0) { if (pbkdf2_verify_ex(storedPassword.derived, suppliedPassword, storedPassword.salt ~ pepper, HashAlgorithm.SHA2_512, to!uint(storedPassword.derived.length), 100000)) return VerifyPasswordResult.Rehash; } if (storedPassword.algorithm == KdfAlgorithm.SCrypt && storedPassword.parameterVersion == 1) { ubyte[] supplied = scrypt_ex(suppliedPassword, storedPassword.salt ~ pepper, 64); if (supplied.constantTimeEquality(storedPassword.derived)) return VerifyPasswordResult.Success; } if (storedPassword.algorithm == KdfAlgorithm.Argon2) throw new CryptographicException("Argon2 is not supported."); return VerifyPasswordResult.Failure; } unittest { import std.digest; import std.stdio; ubyte[48] salt = [ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF ]; writeln("Successful Password Test"); HashedPassword successTest = securePassword("TestPassword!@#$%", salt); writeln("Encoded: ", successTest.toString()); auto verifyResult = verifyPassword("TestPassword!@#$%", successTest, salt); assert (verifyResult == VerifyPasswordResult.Success); writeln("Failure Password Test"); HashedPassword failTest = securePassword("TestPassword!@#$%", salt); writeln("Encoded: ", failTest.toString()); verifyResult = verifyPassword("TestPassword!@#$", failTest, salt); assert (verifyResult == VerifyPasswordResult.Failure); writeln("PBKDF2 Password Test"); HashedPassword pbkdf2Test = securePassword("TestPassword!@#$%", salt, KdfAlgorithm.PBKDF2); writeln("Encoded: ", pbkdf2Test.toString()); verifyResult = verifyPassword("TestPassword!@#$%", pbkdf2Test, salt); assert (verifyResult == VerifyPasswordResult.Success); } public struct KdfResult { public ubyte[] salt; public ubyte[] key; } @safe public KdfResult pbkdf2(string password, uint iterations = defaultKdfIterations) { KdfResult result; result.salt = random(getHashLength(HashAlgorithm.Default)); result.key = pbkdf2_ex(password, result.salt, HashAlgorithm.Default, getHashLength(HashAlgorithm.Default), iterations); return result; } @safe public bool pbkdf2_verify(const ubyte[] key, const ubyte[] salt, string password, uint iterations = defaultKdfIterations) { ubyte[] test = pbkdf2_ex(password, salt, HashAlgorithm.Default, getHashLength(HashAlgorithm.Default), iterations); return constantTimeEquality(key, test); } @trusted public ubyte[] pbkdf2_ex(string password, const ubyte[] salt, HashAlgorithm func, uint outputLen, uint iterations) { ubyte[] output = new ubyte[outputLen]; if(PKCS5_PBKDF2_HMAC(password.ptr, cast(int)password.length, salt.ptr, cast(int)salt.length, iterations, getOpenSSLHashAlgorithm(func), outputLen, output.ptr) == 0) { throw new CryptographicException("Unable to execute PBKDF2 hash function."); } return output; } @safe public bool pbkdf2_verify_ex(const ubyte[] test, string password, const ubyte[] salt, HashAlgorithm func, uint outputLen, uint iterations) { ubyte[] key = pbkdf2_ex(password, salt, func, outputLen, iterations); return constantTimeEquality(test, key); } unittest { import std.datetime.stopwatch; import std.digest; import std.stdio; writeln("Testing PBKDF2 Basic Methods:"); //Test basic methods auto sw = StopWatch(AutoStart.no); sw.start(); auto result = pbkdf2("password"); sw.stop(); writefln("PBKDF2 took %sms for 1,000,000 iterations", sw.peek.total!"msecs"); assert(result.key.length == 48); assert(pbkdf2_verify(result.key, result.salt, "password")); writeln(toHexString!(LetterCase.lower)(result.key)); //Test extended methods ubyte[32] salt = [ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF ]; ubyte[] key = pbkdf2_ex("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", salt, HashAlgorithm.SHA2_384, 64, 100000); assert(pbkdf2_verify_ex(key, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", salt, HashAlgorithm.SHA2_384, 64, 100000)); writeln(toHexString!(LetterCase.lower)(key)); } unittest { import std.digest; import std.stdio; writeln("Testing PBKDF2 Extended with Defaults:"); ubyte[48] key = [ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF ]; ubyte[] vec1 = pbkdf2_ex("", key, HashAlgorithm.SHA2_384, 48, 25000); ubyte[] vec2 = pbkdf2_ex("abc", key, HashAlgorithm.SHA2_384, 48, 25000); ubyte[] vec3 = pbkdf2_ex("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", key, HashAlgorithm.SHA2_384, 48, 25000); writeln(toHexString!(LetterCase.lower)(vec1)); writeln(toHexString!(LetterCase.lower)(vec2)); writeln(toHexString!(LetterCase.lower)(vec3)); assert(toHexString!(LetterCase.lower)(vec1) == "b0ddf56b90903d638ec8d07a4205ba2bcfa944955d553e1ef3f91cba84e8e3bde9db7c8ccf14df26f8305fc8634572f9"); assert(toHexString!(LetterCase.lower)(vec2) == "b0a5e09a38bee3eb2b84d477d5259ef7bebf0e48d9512178f7e26cc330278ff45417d47d84db06a12b8ea49377a7c7cb"); assert(toHexString!(LetterCase.lower)(vec3) == "d1aacafea3a9fdf3ee6236b1b45527974ea01539b4a7cc493bba56e15e14d520b2834d7bf22b83bb5c21c4bccb423be2"); } unittest { import std.digest; import std.stdio; writeln("Testing PBKDF2 Extended with Custom Iterations:"); ubyte[48] key = [0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF ]; ubyte[] vec1 = pbkdf2_ex("", key, HashAlgorithm.SHA2_384, 48, 150000); ubyte[] vec2 = pbkdf2_ex("abc", key, HashAlgorithm.SHA2_384, 48, 150000); ubyte[] vec3 = pbkdf2_ex("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", key, HashAlgorithm.SHA2_384, 48, 150000); writeln(toHexString!(LetterCase.lower)(vec1)); writeln(toHexString!(LetterCase.lower)(vec2)); writeln(toHexString!(LetterCase.lower)(vec3)); assert(toHexString!(LetterCase.lower)(vec1) == "babdcbbf4ff89367ed223d2edd06ef5473ac9cdc827783ed0b4b5eafd9e4097beb2ef66d6fc92d24dbf4b86aa51b4a0f"); assert(toHexString!(LetterCase.lower)(vec2) == "8894348ccea06d79f80382ae7d4434c0f2ef41f871d936604f426518ab23bde4410fddce6dad943c95de75dbece9b54a"); assert(toHexString!(LetterCase.lower)(vec3) == "fba55e91818c35b1e4cc753fbd01a6cd138c49da472b58b2d7c4860ba39a3dd9032f8f641aadcd74a819361ed27c9a0f"); } unittest { import std.digest; import std.stdio; writeln("Testing PBKDF2 Extended with Custom Output Length:"); ubyte[48] key = [ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF ]; ubyte[] vec1 = pbkdf2_ex("", key, HashAlgorithm.SHA2_384, 32, 25000); ubyte[] vec2 = pbkdf2_ex("abc", key, HashAlgorithm.SHA2_384, 32, 25000); ubyte[] vec3 = pbkdf2_ex("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", key, HashAlgorithm.SHA2_384, 32, 25000); writeln(toHexString!(LetterCase.lower)(vec1)); writeln(toHexString!(LetterCase.lower)(vec2)); writeln(toHexString!(LetterCase.lower)(vec3)); assert(toHexString!(LetterCase.lower)(vec1) == "b0ddf56b90903d638ec8d07a4205ba2bcfa944955d553e1ef3f91cba84e8e3bd"); assert(toHexString!(LetterCase.lower)(vec2) == "b0a5e09a38bee3eb2b84d477d5259ef7bebf0e48d9512178f7e26cc330278ff4"); assert(toHexString!(LetterCase.lower)(vec3) == "d1aacafea3a9fdf3ee6236b1b45527974ea01539b4a7cc493bba56e15e14d520"); } @safe public KdfResult hkdf(const SymmetricKey key) { return hkdf(key, getCipherKeyLength(key.algorithm)); } @safe public KdfResult hkdf(const SymmetricKey key, size_t outputLen) { KdfResult result; result.salt = random(getHashLength(HashAlgorithm.Default)); result.key = hkdf_ex(key.value, result.salt, string.init, outputLen, HashAlgorithm.Default); return result; } @trusted public ubyte[] hkdf_ex(const ubyte[] key, const ubyte[] salt, string info, size_t outputLen, HashAlgorithm func) { if (key.length == 0) { throw new CryptographicException("HKDF key cannot be an empty array."); } EVP_KDF *kdf; EVP_KDF_CTX *kctx = null; ubyte[] derived = new ubyte[outputLen]; ossl_param_st[5] params; /* Find and allocate a context for the HKDF algorithm */ if ((kdf = EVP_KDF_fetch(null, "hkdf", null)) == null) { throw new CryptographicException("Unable to create HKDF function."); } kctx = EVP_KDF_CTX_new(kdf); scope(exit) { if (kctx !is null) { EVP_KDF_CTX_free(kctx); } } /* Build up the parameters for the derivation */ string hashName = getOpenSSLHashAlgorithmString(func); params[0] = OSSL_PARAM_construct_utf8_string("digest".toStringz(), cast(char*)hashName.toStringz(), hashName.length+1); params[1] = OSSL_PARAM_construct_octet_string("salt".toStringz(), cast(void*)salt, salt.length); params[2] = OSSL_PARAM_construct_octet_string("key".toStringz(), cast(void*)key, key.length); params[3] = OSSL_PARAM_construct_octet_string("info".toStringz(), cast(void*)info, info.length); params[4] = OSSL_PARAM_construct_end(); if (EVP_KDF_CTX_set_params(kctx, params.ptr) <= 0) { throw new CryptographicException("Unable to set the HKDF parameters."); } /* Do the derivation */ if (EVP_KDF_derive(kctx, derived.ptr, outputLen, null) <= 0) { throw new CryptographicException("Unable to generate the requested key material."); } return derived; } unittest { import std.digest; import std.stdio; writeln("Testing HKDF Extended with Defaults:"); ubyte[48] salt = [ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF ]; ubyte[] vec2 = hkdf_ex(cast(ubyte[])"abc", salt, "", 64, HashAlgorithm.SHA2_384); ubyte[] vec3 = hkdf_ex(cast(ubyte[])"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", salt, "test", 64, HashAlgorithm.SHA2_384); writeln(toHexString!(LetterCase.lower)(vec2)); writeln(toHexString!(LetterCase.lower)(vec3)); assert(toHexString!(LetterCase.lower)(vec2) == "65e464a5d7026678a3af78bf0282592472f85ccd7d1040e2dea5cea9218276a960367d418154a1e95019182a3c857286860aa0711955829e896b5bcdb1224794"); assert(toHexString!(LetterCase.lower)(vec3) == "12a82466f85ead03f50bb502475b47ec50e7224a90f0219955bf09846ed72791206f6e713a529a0082bf7229093f2b4e6c6b467119518a2579a5b091ebe8ba12"); } unittest { import std.digest; import std.stdio; writeln("Testing HKDF Extended with SHA3_384:"); ubyte[48] salt = [ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF ]; ubyte[] vec2 = hkdf_ex(cast(ubyte[])"abc", salt, "", 64, HashAlgorithm.SHA3_384); ubyte[] vec3 = hkdf_ex(cast(ubyte[])"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", salt, "test", 64, HashAlgorithm.SHA3_384); writeln(toHexString!(LetterCase.lower)(vec2)); writeln(toHexString!(LetterCase.lower)(vec3)); assert(toHexString!(LetterCase.lower)(vec2) == "41999e49a273f7f1367c7b3c7bd80d56fa27307cdfdf0274c022a0185080ddaa36410a93098f325785e5c27c406df535c91cc47096dc846d5c1dea671a40f944"); assert(toHexString!(LetterCase.lower)(vec3) == "15addd263fdab613056a7a82804c1d1c158ea901424d277c25407c15be4b7aa8cad52251de18b3151145035e94c8f360517bda7912d2249f80c9662c1a1cd345"); } @safe public KdfResult scrypt(string password) { KdfResult result; result.salt = random(32); result.key = scrypt_ex(password, result.salt, defaultSCryptR, defaultSCryptR, defaultSCryptP, maxSCryptMemory, 64); return result; } @safe public KdfResult scrypt(const ubyte[] password) { KdfResult result; result.salt = random(32); result.key = scrypt_ex(password, result.salt, defaultKdfIterations, defaultSCryptR, defaultSCryptP, maxSCryptMemory, 64); return result; } @trusted public ubyte[] scrypt_ex(string password, const ubyte[] salt, size_t length) { return scrypt_ex(cast(ubyte[])password, salt, defaultKdfIterations, defaultSCryptR, defaultSCryptP, maxSCryptMemory, length); } @trusted public ubyte[] scrypt_ex(string password, const ubyte[] salt, ulong n, ulong r, ulong p, ulong maxMemory, size_t length) { import std.string; return scrypt_ex(cast(ubyte[])password.representation, salt, n, r, p, maxMemory, length); } @trusted public ubyte[] scrypt_ex(const ubyte[] password, const ubyte[] salt, ulong n, ulong r, ulong p, ulong maxMemory, size_t length) { ubyte[] hash = new ubyte[length]; if (EVP_PBE_scrypt((cast(char[])password).ptr, password.length, salt.ptr, salt.length, n, r, p, maxMemory, hash.ptr, length) <= 0) { throw new CryptographicException("Unable to calculate SCrypt hash."); } return hash; } unittest { import std.digest; import std.stdio; writeln("Testing SCrypt Extended with Defaults:"); ubyte[48] salt = [ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF ]; ubyte[] vec2 = scrypt_ex("abc", salt, 1_048_576, 8, 1, 1_074_790_400, 64); ubyte[] vec3 = scrypt_ex("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", salt, 1_048_576, 8, 1, 1_074_790_400, 64); writeln(toHexString!(LetterCase.lower)(vec2)); writeln(toHexString!(LetterCase.lower)(vec3)); assert(toHexString!(LetterCase.lower)(vec2) == "134fca5087e04c2a79e0ea2c793660f19d466db74a069e1f2e4da2b177d51402501bd39ffc592b9419ec0280cc17dca7af8df54f836179d69a4b9e9f6b9467fd"); assert(toHexString!(LetterCase.lower)(vec3) == "45397ec370eb31f3155ad162d83ec165ff8e363bc4e03c1c61c5a31ad17d0dac51d9e8911f32e9b588adf284a9de24561483dbaf0ea519b6a29ecae77eab5b90"); }